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Abstract. The problem of leaming multi-state patterns in neural networks is in- 
vestigated. An analysis of the space of couplings (Gardner approach) yields the 
distribution of local fields. the critical storage capacity a, and the minimum number 
of errors for an overloaded network. For noisy local fields the classification emor ia 
minimised if the local fields of the pattems are allowed t o  lie in intervals of finite 
width. A fast converging, adaptive leaming algorithm is presented, which finds the 
coupling matrix of optimal stability. 

1. Introduction 

Guided by the analogy between networks of formal neurons and models of spin glasses, 
the contributions of physicists to the field of neural networks have mainly concentrated 
on systems of binary units (see [I] for an overview). Recently, however, several au- 
thors have considered the problem of storing multi-state patterns in attractor neural 
networks 12-81, Having in mind the applications of such networks in image processing 
we call this kind of pattern grey-toned patterns. This technical term also indicates 
that  our studies are mainly motivated by potential applications rather than biological 
relevance. 

We consider a network of N formal neurons 4 which can take on Q discrete values: 
E {c,)f=’=,. The (parallel or sequential) dynamics of the system reads 

K ( t  + At)  = dyn(hi(t)) (1) 

where the local field or post-synaptic potential (PsP) is given by 

N 

The input/output-relation dyn maps the real axis onto the discrete set of grey levels. 
We think of dyn as being realized by a staircase function 

dyn(h) = uk if h E [L(u,), U(u,)]  (3) 

where the intervals [L(ower),U(pper)] form a non-overlapping partition of the real axis 
in Q parts. The questions we address here are: 
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(i) How many random Q-state patterns ( Y  E {ul,. . . , u Q } ,  i = 1, .  . ., N and 
U = 1,. . . , p can simultaneously be made fixed points of equation (1) by an appropriate 
choice of the couplings J i j ,  i.e. what is the critical storage capacity of the network? 
What happens if we go beyond this limit? 

(ii) For Q = 2, the perceptron with maximum separation I(: of allowed PSPS is 
denoted 'optimal'. What is the optimal perceptron for Q > 2? 

(iii) How can we explicitly calculate the couplings to achieve the maximum storage 
capacity? 

To answer the first two questions we generalize the analysis of the space of synaptic 
couplings pioneered by Gardner [9, 101 to arbitrary Q. The third problem is solved by 
a generalization of the AdaTron algorithm [12] for binary-valued patterns to Q > 2. 

2. Analytical results 

A sufficient condition for the patterns to be fixed points of equation (1) is 

where [l(<[),u(<Y)] C [L(uk),U(uk)] for ([ = uk (see figure 1). This constraint is 
more severe than it is for the patterns to be fixed points (at least if [ I ,  U] # [L ,  U]) but 
the robustness of the retrieval properties in the presence of additional noise and the 
desire for large basins of attraction for the patterns both require a good separation of 
the allowed hr [13, 141. 

,,,/,///,,& 
h 

Figure  1. Intervals of desired PSPS for Q = 3 (upper axis) and Q = 4 (lower 
axis). To keep the requirements on .I,, less restrictive, the intervals for the 'black' 
and 'white' levels are allowed to stretch to -m and m, respectively. tt denotes the 
distance between the midpoints of two adjacent finite size intervals, 9% the size of 
these intervak. The edges of two adjacent intervah are consequently separated by 
(1 - g ) ~ .  g = 0 forces the PSPS to discrete values (except for the saturated 'black' 
and 'white' levels), and for g = 1 the intervals touch each other, covering the whole 
h-axis. Note that for Q = 2 and g = 0 OUT 6 equals twice the L used by Gardner (cf 
equation (12)). 

It  is clear that  for a growing number of patterns it will be increasingly difficult to 
satisfy the N p  conditions (4). Following the approach of Gardner 19, 101 we can make 
a quantitative attack on the problem by introducing a cost function 
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with 

1 h € [ l , U ]  
0 otherwise 

H depends on the interaction matrix Jij  and counts the errors, i.e. the number of 
pattern sites that fail to obey (4). We further introduce an auxiliary parameter ,8 and 
the partition function 

where p ( J )  is a normalized a priori measure in Jij-space. Throughout this article we 
will use the measure 

(spherical constraint). The problem can now be cast into the language of statistical 
mechanics: The 'mean energy' computed from Z in the limit p -+ 00 is the minimum 
number of errors which can be realized by any coupling matrix Ji j .  This quantity 
still depends on the specific choice of the patterns to be stored. Assuming statistically 
independent random patterns, meaningful general statements will be obtained by av- 
eraging over this quenched disorder. Denoting the average over the patterns by ((.)) 
the typical minimal number of errors is given by 

fmin is the minimum fractional part of the wrong PSPS. The calculation of ((log Z)) 
using the replica trick and the replica-symmetric ansatz has become a standard tool 
in neural network theory and is therefore omitted here. A detailed description of 
the procedure for Q = 2 can be found in the original work of Gardner [9, 101 or in 
textbooks on neural networks [I]. The extension to Q > 2 is straightforward. 

For reasons of simplicity we assume that the El are drawn independently from a 
distribution w(() with mean ( E )  = 0 (unbiased patternst) and variance ( E 2 )  = U * .  

The critical storage capacity a, then reads 

with 

and i = 110, ij = u / u .  The single angular brackets denote the average over the 
grey-level distribution U([). 

t Results for biased p a t t e m  are given in the appendix. 
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The well known result for Q = 2 [9], 

is recovered from equation (10) by setting U’ = 1, -[(-I) = u(l) = cc and -U(-1) = 

If a > a=, i.e. if the network is overloaded, the minimum fraction of wrong PSPS 
/(I) = K .  

is given by 

where I is the solution of 

Note that in the derivation of equations ( lo) ,  (13) and (14) we assumed replica sym- 
metry. This assumption is valid as long as the space of solutions Jij of equation (4) 
is connected. This is, however, not necessarily true for fmin > 0. An analysis of the 
stability of the replica symmetric solution similar to that of de Almeida and Thouless 
[ll] for the SK model shows, that  the replica symmetric solution is stable as long as 

holds, i.e. as long as the the perceptron is not too heavily overloaded. Equation (15) 
especially guarantees the stability of the replica symmetric solution in the error-free 
regime I - 00 (see figure 5). 

If for the moment we assume that the intervals [ I ,  U] are degenerated to discrete 
points (response levels) the equation for a, simplifies to 

where (1 ’ )  is the variance of the response levels. The corresponding coupling matrix 
can then be expressed by means of the so-called pseudo inverse [15]: 

with 

If K is the distance between two adjacent response levels, ( / 2 )  is roughly proportional to 
d Q Z ,  i.e. ac decreases with increasing separation of the response levels and increasing 
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number of grey levels. The maximum a, is achieved for K = 0, i.e. when the network 
can no longer resolve the grey levels. The ac a Q-' law has been found recently by 
Rieger [6] for the Hopfield matrix (see figure 4). Note, however, that ac is independent 
of Q if one keeps the grey-level separation fixed, since in this case (l') a ua. 

The fact that ac decreases with increasing Q whereas the information content of 
a pattern vector increases with Q (like logQ for equally weighted grey levels) can 
be used in neural network design in order to maximize the information capacity per 
synapse, I = aclogQ. If one allows very narrow response levels (e.g. n a Q-'), I 
can he very high (see figure 2). This unbounded growth of I with Q is based on the 
continuous nature of the couplings, whose representation requires an infinite amount 
of hits. A suitable measure of information capacity in neural networks should take 
this into account [SI. 

K 

Figure 2. Information capacity I = ac logl Q in bits/synapse against responr~level 
separation 6 for discnte response IeveL (pseud-inverse) and various values of Q and 
0 = 1 .  Curves like these can be used to choose the grey-level resolution Q that 
maximizes the information capacity in the network for fixed K. 

The dependence of ac on the variance of the response levels remains qualitatively 
the same if the intervals [I, U] have non-zero width (figure 1). Since equation (4) is less 
restrictive for finite intervals, ac is greater than for discrete response levels. Figure 3 
shows a, for different values of Q and for the interval structure depicted in figure 1. 
In figure 4 i t  can be seen, that ac a QWz for Q >> 1 (and fixed U')  for both discrete 
response-levels and intervals of non-zero width. 

Figure 5 shows the minimum error fmi, in an overloaded network as a function of 
a for Q = 2 , 3 , 4 , 5 .  The slope of fmi,(a) at a = a, increases with the number of grey 
levels: For Q >> 1, overloading seems to be disastrous. The broken parts of the curves 
indicate the region where replica symmetry has to be broken according to inequality 
(15). From equations (13) and (14) i t  follows that fmin is always bounded by 

where equality holds in the limit a -+ M. The result fmi, < 1 even in the limit 
a + 00 for non-zero intervals only reflects the fact that for a - 00 the distribution of 
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a 

K 

Figure 3. Critical storage capacity against I( for different values 01 Q (0 = 1) and 
g = 0.5. Note that e c ( ~  = 0 )  = Q / ( Q  - 1).  

1.000 

0.100 
a 

0.010 

0.001 
1 10 100 

B 
Figure 4. Criticalstoragecapacitya, against Q (r = 1). Thestabilityintervals(g = 
0.5) respectively the discrete response levels (pseud-inverse) were taken equidistant 
with 6 = 1 .  The dashed line is given by equation (16). 

the psps is Gaussian and there is always a non-vanishing probability of finding a PSP 
in any non-zero interval. 

In a saturated network (a = a<), the distribution of the PSPs is more structured. 
It can again be calculated using the replica trick. The result is a simple generalization 
of the well known distribution for Q = 2 [14]: 

with 

As forced by equation (4), p ( h )  = 0 outside the intervals [[,U]. In the interior Of 
the intervals, p simply follows the corresponding part of a Gaussian distribution with 
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f 

a 
Figure 5. Minimum typical emor fmin in an overloaded network against memory 
loading a (0 = 1). The curves were calculated with g = 0.5 and 6 = 2.  The dashed 
parts of the curves indicate the regime, where according to inequality (15) the replica 
symmetry has to he broken. 

zero mean and variance U*, whereas the weight of the excluded left and right tails 
of the Gaussian distribution are concentrated in 6-peaks at  the left and right edges 
respectively of the intervals (see figure 8). 

For Q = 2 and given U 4 .,(IC = 0) the perceptron with maximum IC is denoted 
‘optimal perceptron’ since the maximized separation of the response intervals improves 
the stability of the patterns in the presence of additional noise. For Q > 2, the 
appearance of the interior intervals of finite width makes the question for the optimal 
perceptron more complicated. Equation (20) shows that most of the PSPs in the 
saturated perceptron are concentrated at  the edges of the intervals. To obtain well 
separated PSPS it therefore seems reasonable to choose an interval structure with 
maximum separation of edges of adjacent intervals. For the interval structure in 
figure 1 this means g = 0. However, a non-zero g not only leads to less separated 
interval edges but also to a reduced weight of 6-peaks in p(h) .  The latter effect may 
compensate the former. To analyse this question quantitatively we add a Gaussian 
noise with zero mean and variance q2 to the PSP. The resulting distribution p., of the 
noisy PSPs reads 

Due to the noise, a unique map from h to one of the grey levels is no longer guaranteed. 
Figure 6 shows p,, for Q = 3. The hatched area (‘crosstalk error’) is the probability 
that a PSP is misinterpreted. An optimal perceptron should minimize this crosstalk 
error for given a. For the interval structure of figure 1 this means that we have to 
choose g in order to keep the crosstalk error low. Figure 7 shows, that the crosstalk 
error is minimized for non-vanishing g. Hence, for Gaussian disturbing noise and 
equidistant response intervals a finite interval width is superior to discrete response 
levels. To minimize the probability, that  a PSP is mapped to the wrong grey level, the 
steps of the input/output relation dyn(h) should be placed at  those values of h where 
the curves in figure 6 meet. 
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h 

Figure 6. Distribution of the PSPS in the saturated perceptmn for Q = 3, a = 1, 
c1 = 0.5 and 0 = 0.5  with addedGausiannoise of variance r )  = 0.24. The noiseleads 
to an overlap of the distributions for the three grey levels (hatched area) which in 
tum canlead to a wrong classification ('crosstak error'). 

Q=3 q = O . l O O  
~~~ Q=5 q=0.043 

4.5 

.-..--..-- .. 
C 

i 5 

2.5 ----d 
0.0 0.1 0.2 0.3 

g 

Figure 7. Crosstalk error c against g. c is the probability (in %) that a PSP is 
mapped to the wrong grey level. a = 1.0 and a = 1 for both curves. 

3. Learning rule and simulations 

Algorithms, which produce optimal stabilit,y and which reach the maximum possible 
storage capacity, are known and well understood for the two-stat6 perceptron with 
continous couplings. The AdaTron algorithm as proposed by Anlauf and Biehl [12], 
which is a surprisingly simple application of dual quadratic programming, has proven 
to be fast converging. It can be generalized to grey-level patterns withont making 
the problem much more complicated. For a given interval structure we maximize the 
overall scaling factor IC by minimizing a quadratic form under linear constraints. It is 
sufficient to regard a local learning rule, so that we can write couplings for neuron 0 
as 
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because components perpendicular to the linear hull of the patterns have no effect on 
the PSI’S. We write x for the p component vector of xu. Then the quadratic norm can 
be written as 1J21 = xTCx, with C as in (18). Furthermore we require that the PSPs 
have values in given intervals. We denote the vector of the lower boundaries as I and 
upper boundaries as U, so we have linear constraints 

I < C X < U  (23) 

for each component. The difference to the original AdaTron is that we do not only 
have one lower bound, but several and also upper bounds. Dual transformation (see 
e.g. [16]) yields 

I maxxf = - ixTCx+xTb 

(24) I boundary active 
> 0 : lower 

subject to x; . 
< o :upper J 

where b is the vector of the active boundaries. 
However if learning is necessary (the lower hound is active), learning intensities 

should be as low as possible and for the case in which unlearning is necessary (the upper 
bound is active) learning intensities should be as high as possible. The construction of 
the solution works iteratively, starting from the dual feasible point xi = 0 sequentially 
for all patterns. The solution is found by applying 

max(0, & ( l p  - h” )  + 2;) 
min($(u” - h” )  + zr,max(O, &(la - h”)  + xr)) 
min(0, &-(U” - h a )  + 2:) 

: h” < 1” 
: 1” < h” < U” 
: h’ > u p .  

zl+l = 

( 2 5 )  
{ 

Let 62” = - z f .  For the case when the field of an actually learned (x”, 62” > 
0) or unlearned pattern (x”, 62” < 0) never happens to drift across the whole interval 
while the other patterns are learned (i.e. if g is not too small), the rule for 1” < h’ < 1” 
is sufficient for all h”.  

Convergence t o  a solution with maximal K is guaranteed for 0 < 7 < 2 as can 
be proved in a manner similar to the proof the AdaTron. I t  should be noted that no 
restrictions (like, for example, statistical independence) have to he imposed on the 
patterns in order to guarantee the convergence of our algorithm. 

Simulations were done only for unbiased and randomly chosen patterns with equal 
probability for each grey level and 7 = 1. The intervals were chosen as shown in 
figure 1. Figure 8 shows theory and simulation data K against a for fixed g. Two 
curves are shown, one for three and the other for four intervals. The size of the 
system for the simulations was N = 127; the points shown were averaged over 5000 
trials. The distribution of the PSPs is plotted in figure 9. Simulation data are again 
accumulated over 5000 systems with N = 127. The theoretically calculated curves are 
in good agreement with the numerical experiment. All 6-peaks lie within channels of 
high observation rates. Also the intensities of the channels with the 6-peaks are in 
good agreement with the theory. 

These good agreements indicate that the analytical results gained in the limit 
N -+ 03 can be safely applied to networks of moderate size. 
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a 

Figure 8. Maximum reparation of intervals against memory loading, theory (id 
curve) and simulations (symbols) for N = 127 averaged over 5000 trials for Q = 3 
and Q = 4 with g = 0.4 and g = 0.25. The error in the averaged data points is much 
smaller than the size of the symbols. 

h 
Figure 9. Distribution of PSPS in the saturated network, theory and simulation. 
Numerical data were accumulated over 5000 trials. N = 127, Q = 4 and g = 0.25. 
Theoretical &peaks are not shown; they fall into channels of high observation rates, 
which had to be clipped a t  the top of the figure 

4. Conclusions 

In this contribution we have shown how the expressions for oic, fmi, and p(h) have to 
be generalized from the case Q = 2 to the case Q 2 2 and its Q response intervals 
[ l ( ( ) ,  U(()]. The formula for oic (equation (IO)) says that the product of a and the 
Gaussian integrals over the complements of the Q stability intervals must not exceed 
1. This viewpoint suggests that  it should be possible to arrive a t  equation (10) by 
simple geometrical arguments and the central limit theorem, avoiding the cumbersome 
replica calculation. For Q = 2 and I( = 0 this was done by Cover [17] 

We have seen that the decrease in a, with increasing Q is approximately propor- 
tional to (I(&)-* (for fixed U'). For given response intervals, the number of grey levels 
may be chosen in order to maximize the information capacity. Further we found that 
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the interval structure that minimizes the 'crosstalk error' in the presence of additional 
noise has intervals of non-zero width, 

We calculated the minimum error that  can be achieved in an overloaded network 
and found that the perceptron reacts more sensitive on overloading for larger values 
of Q. 

We have seen how the AdaTron algorithm has to be generalized to cope with the 
multi-interval restrictions (equation (4)). It should he possible to  generalize other 
learning algorithms for Q = 2 in a similar way. 
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Appendix 

The analysis of the space of the couplings is not restricted to unbiased patterns. For 
the sake of completeness we give the results for patterns which are drawn from a 
distribution with 

The minimum error now reads 

where M and z have to be determined from 

"=(i  (I "- .3M) /O (I-.3.4-%.)/0 

and 

Dz(l - aM - uz)' (28) > ( I - o M ) / o  I (u-oMtz)/o 
D:(u - a M  - U:)' + 

(u-oM+r)/a ( I - n M ) / o  

O =  (1 u-aM)/o  D z J  ( l - & & 4 4 ) / 0  D z )  . (29) 

The critical storage capacit,y is obtained for z -+ 00. The additional parameter M can 
be interpreted as the bias of the couplings (see IS]). 
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